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travel distances and virtual velocities are for sand moving
over sand. Leopold et al. (1966) report similar travel
distances for gravel moving over sand in the ephemeral
arroyos of New Mexico. Although their data do not allow
the calculation of virtual velocities, it is likely that they are
comparable to those calculated in this study. Rates of
particle travel for sand and gravel moving over sand
appear to be two-three orders of magnitude higher than
those recorded for gravel moving over gravel at com-
parable flow strengths (Hassan et al., 1992).

5. Conclusions

The dynamics of bed material transfers in three head-
water channels of a dryland river catchment subject to
flash flooding have been examined. In each channel,
dense arrays of scour chains were used to derive spatially
distributed information on volumes of stream-bed scour,
fill and net changes in sediment storage for a range of
competent flows. The results demonstrate that sediment
transfers through the reaches were accompanied by
complex patterns of compensating scour and fill which
maintained the channels in approximate steady state. As
suggested by Butcher and Thomes (1978), sediment
storage did not appear to be a significant control on
sediment transfers. The efficiency by which fluvial pro-
cesses delivered sediment through these dryland head-
water channels is in marked contrast to the dynamics of
sediment transfers in humid-temperate upland environ-
ments which are dominated by sediment storage processes
(e.g. Benda et al., 2005). Much of the variability in the
magnitude of stream-bed scour generated by individual
flow events can be explained by the magnitude of the
floods (cf. Lekach and Schick, 1983). Estimates of total
volumetric scour per unit bed area for the three channels
correlate strongly with values of peak unit stream power
and the resultant trend is described well by a simple power
law function. Accounting for the complex patterns of
compensating scour and fill within the reaches is more
difficult without more detailed hydraulic information.
They may, however, reflect spatial and temporal varia-
tions in bed shear stress arising from the growth and decay
of secondary flows during the passage of flood flows. This
study also highlights the ability of scour chains to
document sediment transfers that do not result in
morphological change over the time of survey. As such,
scour chains may provide a methodological basis for the
application of morphological approaches to investigating
sediment transport (e.g. Ashmore and Church, 199§;
Haschenburger and Church, 1998) in dryland channels
characterised by compensating scour and fill during
individual events. These approaches have yet to be

applied in dryland settings despite their ability to
document spatial and temporal variations in erosion and
deposition and to overcome many of the problems
associated with deploying conventional techniques for
measuring sediment transport in these environments
(Laronne et al., 1992).

Notation

a (b)  Length of scour chain above elbow (exposed
on bed surface), m

Acceleration due to gravity, m s™2

Sediment transfer distance, m

Manning’s n

Ppo (Pch) Mean porosity of stock pond (channel) sediments
Q O, Discharge (peak discharge), m? s

Ry Autocorrelation coefficient at lag &
§ Reach-average bed slope, m m ™'

= ~Og

T Duration of competent flow, min
U Virtual rate of travel, m h™"
p

Vi Volume of sediment trapped in stock pond, m’
Vi, Vs ¥; Volume of scour or fill for the ith cross section,
rth event and all events in a reach, m>

Vii Volume of scour (or fill) at the ith cross section
calculated using & chains along the section, m*

Vn,, Vn,, Vn, Net volume change for the ith cross section,

rth event and all events in a reach, m®

Vf; (Vs;) Volume of fill (scour) for the ith cross section, m’

Vf, (Vs,) Volume of fill (scour) for the rth event, m’

Vf; (Vs,) Total volume of fill (scour) for all events in a

) reach, m’

Vs, Volumetric scour per unit bed area, m> m™?2
V, xth random volume estimate of scour (or fill), m>
4 Mean random volume estimate of scour or fill, m*
(Vn,)  Vn, as a percentage of Vs,, %

w Channel width, m
X; Cross-stream distance of the jth prism, m
Vi Downstream length of the prisms at the ith

cross section, m

Y, Peak flow depth, m

z Mean bed elevation change, m

zf (zs) Depth of fill (scour), m

78 Mean depth of scour, m

zZ; Mean depth of scour or fill of the jth prism

J
da (6b) Error in a (b), m
oVv/, eV, 6V, Uncertainties in V} V, and V, due to
measurement error, m>
aVf!, oVs/ Uncertainties in Vf; and Vs; due to
measurement error, m’
dVn/, 8Vn,', 6Vn, Uncertainties in Vn;, Vn, and Vn,
due to measurement error, m>
ov,”, éV," Uncertainties in ¥V, and V, due to cross
section location, m>
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oVn,"”, dVn," Uncertainties in ¥n, and ¥n, due to cross
section location, m®
avy", ov,”, oV Uncertainties in V;, V, and V, due to
cross-stream sampling strategy, m>

ovn/l", oVn,, 0Vn/” Uncertainties in Vn;, Vn, and Vn,
due to cross-stream sampling
strategy, m’

0x, 0y, 0z Ermrorin x;, y; and z; m

AV,, AVn, Total error associated with ¥, and Vn,, m*

AV,, AVn, Total error associated with ¥, and ¥n,, m*

€ () Root mean square error (relative root mean

square error)

Th Semi-variance at lag h, cm?

p Density of flow, kg m™3

wp Peak unit stream power, W m™ 2
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